Stamou Group – University of Copenhagen

Forward this page to a friend Resize Print Bookmark and Share

English > Research > Stamou Group

Stamou Group

Our lab is developing disruptive technologies to study the biophysical properties of membranes and membrane proteins on the nanoscale using fluorescence microscopy. Membrane proteins are one of the most important classes of proteins in biology comprising more than 60% of existing pharmaceutical targets. Biological membranes enable the function of membrane proteins and therefore play a key role themselves in governing a plethora of biological processes. Our work uncovers hitherto unknown nanoscale properties of membrane and membrane proteins that ultimately dictate cell behavior, and consequently provides a path towards new generations of therapeutic agents based on entirely new biological principles.

The exciting problems we are investigating are situated at the interface of biology, physics and nanotechnology, and to address them experimentally we have assembled a dynamic, interdisciplinary, group of top-tier biophysicists, biochemists, molecular biologists, and nanotechnologists. Our grants and student projects are frequently in collaboration with world-leading industrial partners including Aquaporin, Chr. Hansen, Novozymes and Novo Nordisk.

Research keywords
Nanoscale membrane biophysics, membrane curvature, single molecules, fluorescence microscopy, Ras, G protein coupled receptors, primary and secondary active transporters.

 

Selected recent publications

  1. Nature Chemical Biology, 2017. (in press)    
    Membrane curvature regulates sorting of GPCRs within the plasma membrane of living cells in a ligand-specific manner               
    Kadla R. Rosholm, Natascha Leijnse, Anna Mantsiou, Vadym Tkach, Søren L. Pedersen, Volker F. Wirth, Lene B. Oddershede, Knud J. Jensen, Karen L. Martinez, Nikos S. Hatzakis, Poul Martin Bendix, Andrew Callan-Jones and Dimitrios Stamou
  2. Science, 2016. 351 (6280): p. 1469-1473        
    Direct observation of proton pumping by a eukaryotic P-type ATPase      
    Salome Veshaguri, Sune M. Christensen, Gerdi C. Kemmer, Mads P. Møller, Garima Ghale, Christina Lohr, Andreas L.Christensen, Bo H. Justesen, Ida L. Jørgensen, Jürgen Schiller, Nikos S. Hatzakis, Michael Grabe, Thomas Günther Pomorski, Dimitrios Stamou                  
  3. Nature Chemical Biology, 2015. 11 (11): p. 822-825          
    Membrane curvature bends the laws of physics and chemistry                   
    Lars Iversen, Signe Mathiasen, Jannik Bruun Larsen, Dimitrios Stamou
  4. Nature Chemical Biology, 2015. 11 (3): p. 192-194            
    Front Cover Page
    Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases            
    Jannik Bruun Larsen, Martin Borch Jensen, Vikram K. Bhatia, Søren L. Pedersen, Thomas Bjørnholm, Lars Iversen, Mark Uline, Igal Szleifer, Knud J. Jensen, Nikos S. Hatzakis and Dimitrios Stamou
  5. Nature Methods, 2014. 11 (9): p. 931-934     
    Nanoscale high content analysis using compositional heterogeneities of single proteoliposomes        
    Signe Mathiasen, Sune M. Christensen,, Juan Jose Fung, Soren G. F. Rasmussen, Jonathan F. Fay, Sune K. Joergensen, Salome Veshaguri, David L. Farrens, Maria Byrne, Brian Kobilka, Dimitrios Stamou
  6. Science, 2014, 345 (6192): p. 50-54                
    Single molecule analysis of Ras activation by SOS reveals allosteric regulation via altered fluctuation dynamics                
    L. Iversen, H.-L. Tu, W.-C. Lin, S. M. Christensen, S. M. Abel, J. Iwig, H.-J. Wu, J. Gureasko, C. Rhodes, R. S. Petit, S. D. Hansen, P. Thill, C.-H. Yu, D. Stamou, A. K. Chakraborty, J. Kuriyan, J. T. Groves.                  
  7. Nature Nanotechnology, 2012. 7 (1): p. 51–55                   
    Mixing sub-attolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics.          
    S. M. Christensen; P.Y. Bolinger; N.S. Hatzakis; M.W. Mortensen and Dimitrios Stamou
  8. Nature Chemical Biology, 2009. 5 (11): p. 835                   
    How Curved Membranes Recognize Amphipathic Helices and Protein Anchoring Motifs.                   
    N. S. Hatzakis, V. K. Bhatia, J. Larsen, K. L. Madsen, P. Y. Bolinger, A. H. Kunding, J. Castillo, U. Gether, P. Hedegård and Dimitrios Stamou.