Methods of Structure Assessment in OBSC Libraries

M. Meldal, F. Diness, Grith Hagel, R. Michael, S.F. Christensen

Centre for Solid Phase Organic Combinatorial Chemistry
Carlsberg Laboratory, Valby, Denmark, mpm@crc.dk
The “One Bead SOME Compounds” Solid Phase Assay

Morten Meldal et al.
Carlsberg Laboratory

The “One Bead Some Compounds” Solid Phase Assay
A very general assay format

Split-Mix Library

Identity tag

Assay container
~0.1 μL/bead

Indicator, property modifier auxiliary molecule

Reactive library component

PEG-Based resin

Enzyme reaction
Chemical reaction
Cellular interaction?

Cells on Beads
Casette for Expression of GPCR + Reporter

Morten Meldal et al.
Carlsberg Laboratory

Functionality
MC4R + CRE-YFP
Inactives
Hit
Library

Primary screen
YFP or DS-Red

Receptor

Single vector:
Stable Expression
HEK-293 Cellline

Fluorescence microscopy
Control
aMSH

The ACS - Ralph F. Hirschmann Award Lecture 2009
Cells on beads: Background

- PEGA1900 in H2O
- PEGA1900 in Hams extracted by PEGA+adh
- SPOCC
- PEGA1900+adh pept. in Hams
- Tentagel+adh pept. in Hams
- SPOCC+adh pept. in Hams
Cell adhesion peptides derived by CombiChem

<table>
<thead>
<tr>
<th>Researcher</th>
<th>Tissue/Cell Line</th>
<th>Peptide Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samuel Denmeade et al.</td>
<td>Prostate</td>
<td>QMARIPKRLARH-</td>
</tr>
<tr>
<td>Kit Lam et al.:</td>
<td>Prostate</td>
<td>DNRIRLQAXXX-</td>
</tr>
<tr>
<td>Kit Lam et al.:</td>
<td>Lung A549</td>
<td>c-NGRGEQ-c-</td>
</tr>
<tr>
<td>Kit Lam et al.:</td>
<td>Lymphoma</td>
<td>XXXpLDX-</td>
</tr>
<tr>
<td>Kit Lam et al.:</td>
<td>Lung Bronc.</td>
<td>Nle-DXXXXX-</td>
</tr>
<tr>
<td>Horst Kessler et al.:</td>
<td>Jurkat (lym)</td>
<td>Iqui-LD-</td>
</tr>
<tr>
<td>Horst Kessler et al.:</td>
<td>Integrins</td>
<td>RGD-peptides</td>
</tr>
<tr>
<td>Nomizu Motoyoshi et al.:</td>
<td>Tissue repair</td>
<td>Laminin Peptides</td>
</tr>
</tbody>
</table>

New concept: weak multivalent interaction
- General adhesion towards cell-lines used in screening
- Metabolic stability
- Diversity

\[
D-\text{aa}_1-D-\text{aa}_2-D-\text{aa}_3-D-\text{aa}_4-D-\text{aa}_5-D-\text{aa}_6-\text{PEGA}_{1900}
\]
Cell adhesion on D-amino acid library

Auto fluorescence removed
U2OS/GFP + beads + beadsorfer: 75,000 beads
Recovered from sorting: 536 beads
Hek293 adhesion: ~40 beads isolated
Sequencing
Re-synthesis
Adhesion study: 50-100 beads/sequence

Weak adhesion

Strong adhesion
Adhesion molecules from D-amino acid library

Motif

Best

<table>
<thead>
<tr>
<th>LEU</th>
<th>ARG</th>
<th>LEU</th>
<th>LYS</th>
<th>PRO</th>
<th>LYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEU</td>
<td>ARG</td>
<td>HIS</td>
<td>ARG</td>
<td>LEU</td>
<td>LYS</td>
</tr>
<tr>
<td>ILE</td>
<td>ARG</td>
<td>TYR</td>
<td>ARG</td>
<td>LEU</td>
<td>ARG</td>
</tr>
<tr>
<td>ALA</td>
<td>GLN</td>
<td>ARG</td>
<td>PRO</td>
<td>ARG</td>
<td>TRP</td>
</tr>
<tr>
<td>TYR</td>
<td>ARG</td>
<td>TRP</td>
<td>ARG</td>
<td>ILE</td>
<td>ALA</td>
</tr>
<tr>
<td>ARG</td>
<td>MET</td>
<td>LYS</td>
<td>LEU</td>
<td>HIS</td>
<td>LYS</td>
</tr>
<tr>
<td>LYS</td>
<td>MET</td>
<td>ARG</td>
<td>TYR</td>
<td>CYS</td>
<td>GLN</td>
</tr>
<tr>
<td>THR</td>
<td>LYS</td>
<td>ARG</td>
<td>LEU</td>
<td>LYS</td>
<td>THR</td>
</tr>
<tr>
<td>THR</td>
<td>LYS</td>
<td>GLY</td>
<td>LYS</td>
<td>ALA</td>
<td>LYS</td>
</tr>
<tr>
<td>ALA</td>
<td>LYS</td>
<td>THR</td>
<td>ARG</td>
<td>HIS</td>
<td>ARG</td>
</tr>
<tr>
<td>ASN</td>
<td>ARG</td>
<td>PRO</td>
<td>ARG</td>
<td>VAL</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Fair

<table>
<thead>
<tr>
<th>LYS</th>
<th>PHE</th>
<th>GLY</th>
<th>GLN</th>
<th>LYS</th>
<th>CYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARG</td>
<td>HIS</td>
<td>TRP</td>
<td>GLY</td>
<td>ARG</td>
<td>ILE</td>
</tr>
<tr>
<td>LYS</td>
<td>TRP</td>
<td>PRO</td>
<td>HIS</td>
<td>HIS</td>
<td>ARG</td>
</tr>
<tr>
<td>LYS</td>
<td>VAL</td>
<td>TYR</td>
<td>MET</td>
<td>HIS</td>
<td>LYS</td>
</tr>
<tr>
<td>ARG</td>
<td>SER</td>
<td>ALA</td>
<td>LYS</td>
<td>ARG</td>
<td>(CYS)</td>
</tr>
<tr>
<td>VAL</td>
<td>ARG</td>
<td>THR</td>
<td>VAL</td>
<td>ARG</td>
<td>VAL</td>
</tr>
<tr>
<td>ARG</td>
<td>ALA</td>
<td>PHE</td>
<td>LYS</td>
<td>TYR</td>
<td>TYR</td>
</tr>
<tr>
<td>LYS</td>
<td>MET</td>
<td>PRO</td>
<td>LYS</td>
<td>LYS</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Intermediate

<table>
<thead>
<tr>
<th>TRP</th>
<th>TYR</th>
<th>ALA</th>
<th>LYS</th>
<th>ARG</th>
<th>ARG</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRO</td>
<td>PHE</td>
<td>ARG</td>
<td>LYS</td>
<td>LYS</td>
<td>CYS</td>
</tr>
<tr>
<td>LYS</td>
<td>LYS</td>
<td>LYS</td>
<td>PHE</td>
<td>TYR</td>
<td>TYR</td>
</tr>
<tr>
<td>GLU</td>
<td>ARG</td>
<td>LYS</td>
<td>ARG</td>
<td>CYS</td>
<td>THR</td>
</tr>
<tr>
<td>VAL</td>
<td>PRO</td>
<td>ARG</td>
<td>LYS</td>
<td>VAL</td>
<td>GLN</td>
</tr>
<tr>
<td>ARG</td>
<td>ARG</td>
<td>LEU</td>
<td>LEU</td>
<td>PRO</td>
<td>ILE</td>
</tr>
<tr>
<td>ARG</td>
<td>SER</td>
<td>ALA</td>
<td>LYS</td>
<td>ARG</td>
<td>CYS</td>
</tr>
<tr>
<td>LYS</td>
<td>LYS</td>
<td>GLN</td>
<td>PHE</td>
<td>TRP</td>
<td>PHE</td>
</tr>
<tr>
<td>ILE</td>
<td>ARG</td>
<td>LYS</td>
<td>HIS</td>
<td>LEU</td>
<td>ILE</td>
</tr>
<tr>
<td>PRO</td>
<td>ARG</td>
<td>ARG</td>
<td>VAL</td>
<td>VAL</td>
<td>ILE</td>
</tr>
<tr>
<td>LYS</td>
<td>ARG</td>
<td>GLU</td>
<td>SER</td>
<td>LYS</td>
<td>ARG</td>
</tr>
<tr>
<td>ILE</td>
<td>THR</td>
<td>ARG</td>
<td>ARG</td>
<td>THR</td>
<td>GLN</td>
</tr>
<tr>
<td>LYS</td>
<td>MET</td>
<td>PRO</td>
<td>LYS</td>
<td>LYS</td>
<td>ASN</td>
</tr>
</tbody>
</table>
From screening of cellular adhesion on 75,000 PEGA library beads

Some cell clusters
70-100% coverage

Few big cell clusters
50-70% coverage

Few big cell clusters
60-80% coverage

Few non-attached cells
50-75% coverage
Many beads

All D-amino acids
PEGA-Cell adhesion peptide function

159

159 158

158 158
Interaction with phosphatidylcholine bilayer

Mainly superfacial Phosphodiester – arg interaction

Probably:
No cell penetration
No membrane thinning
No pore formation
No metabolism
Peptide conjugation to plates
Even cell distribution on adhesion peptide

Cells growing on a Cell culture glass plate (Nunc) for 24 hours

Cells growing on H-arirqrg-peptide-D-Lys-Plate for 24 hours

Edge

Center
Cells growing on the two plates for 6 days

Not feeling good

Excellent condition

Cell culture plates

Adhesive peptide plates
Improved cell culture – HEK_{293} cell (10000) culture (3 days)

Poly-D-Lys

Adhesive peptide
Scaffolds by N-acyliminium Cascade Chemistry

MC4R + CRE-YFP

Control

GTPase

GTPase

Ga

GTP

Atp

AC

c-AMP

PKA

CREB

Nucleus

Transcription

Dissociation

GTP

Ga

Gb

G-g

G-protein

PDE

5'AMP

Prot

CRE

YFP

Active

aMSH

IBMX

Prot

N

GDP

Ga

GDP

5'AMP

Prot

CRE

YFP

Nucleus

Transcription

Dissociation

GTP

Ga

Gb

G-g

G-protein

PDE

5'AMP

Prot

CRE

YFP

Nucleus

Transcription

Dissociation

GTP

Ga

Gb

G-g

G-protein

PDE

5'AMP

Prot

CRE

YFP

Nucleus

Transcription

Dissociation

GTP

Ga

Gb

G-g

G-protein

PDE

5'AMP

Prot

CRE

YFP

Nucleus

Transcription

Dissociation

GTP

Ga

Gb

G-g

G-protein

PDE

5'AMP

Prot

CRE

YFP

Nucleus

Transcription
The cell’s-on-bead assay with single vector MCR4/YFP

Beads Adh + resin bound activation peptide

NO TSA required

DT1058 51 14-05-2008
PEGA-Cell adhesion peptide: negative control

- No ligand
- Adhesion peptide only
- No Fluorescence
PEGA-Cell adhesion peptide H-arirqrg-

Mixed beads of control and 100 μM (on resin) ligand
NO TSA

Active Control Control Active Active Active
Second adhesion screen of 55,000 D-aa - peptides

BIAS X R/K X R/K X R/K X

Columns / aa in 20 column synthesizer

<table>
<thead>
<tr>
<th>aa7</th>
<th>aa6</th>
<th>aa5</th>
<th>aa4</th>
<th>aa3</th>
<th>aa2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>4</td>
<td>r</td>
<td>9</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>i</td>
<td>4</td>
<td>k</td>
<td>9</td>
<td>h</td>
<td>2</td>
</tr>
<tr>
<td>y</td>
<td>4</td>
<td>I</td>
<td>2</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>k</td>
<td>2</td>
<td>p</td>
<td>2</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>r</td>
<td>2</td>
<td>m</td>
<td>2</td>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>4</td>
<td>t</td>
<td>2</td>
<td>k</td>
<td>2</td>
</tr>
<tr>
<td>i</td>
<td>2</td>
<td>h</td>
<td>2</td>
<td>n</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>m</td>
<td>1</td>
<td>v</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>q</td>
<td>2</td>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>
Second adhesion screen of 55,000 D-aa - peptides

Only Mother ion: 4+

No apparent ion series

Mother ion: 3+
Second adhesion screen of 55,000 D-aa - peptides

1) Determine accurate mass within 50 ppm
2) Compose virtual candidates
3) Assign/Edit peak-listing
4) Score ~ Y0, Y1, B1, B2 & B3 series

Tripple charged mother ion
60 amu: 1+, 2+ and 3+ ions
Second adhesion screen of 55,000 D-aa- peptides

Virtual mass determination for all library members and selection by accurate mass determination

~55,000 Compounds
Second adhesion screen of 55,000 D-aa - peptides

Scoring structures selected by accurate mass determination by virtual fragment matching of MSMS data
Second adhesion screen of 55,000 D-aa - peptides

HEK293-cells stick and hits may be sorted automatically

All D-Amino acids

H- K L H R I R / R A -OH

H- K L Y K Y R A -OH
H- K L Y K H R A -OH
H- K L Y K I / L R A -OH
H- K L Y R P R A -OH
H- R L Y R V R A -OH
H- K L P R V K A -OH
H- K L E R V K A -OH
H- K L K R I / L K A -OH
H- K L H R Q K A -OH
H- K L H R I / L K A -OH
H- K L H R I / L K A -OH
H- K L H R I / L K A -OH
H- K L H R I / L K A -OH
H- R L H R I / L R A -OH
H- R L H R Y R A -OH
H- R L T R T R A -OH
H- R L T R T R A -OH
H- R L T R T R A -OH

H- K R X R Y R A -OH
H- R L I / L T P R A -OH
H- K L I / L L I / L K A -OH
H- R L K R Y I A -OH
H- R L T K Y I A -OH
H- R L D R Q H A -OH
H- K K Y L I / L R A -OH
H- A R P R D R A -OH
H- A R D K D R A -OH
H- Y R I / L K H R A –OH
H- Y R I / L K K R A –OH
H- I / L R K L I / L R A -OH
H- I / L K K L P K A -OH
H- A R H L P K A -OH
H- A L K R V H A -OH

Bias of aa’s in 20 columns

<table>
<thead>
<tr>
<th>aa7</th>
<th>aa6</th>
<th>aa5</th>
<th>aa4</th>
<th>aa3</th>
<th>aa2</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 4</td>
<td>r 9</td>
<td>l 2</td>
<td>k 8</td>
<td>p 2</td>
<td>k 5</td>
</tr>
<tr>
<td>i 4</td>
<td>k 9</td>
<td>h 2</td>
<td>r 8</td>
<td>l 2</td>
<td>r 8</td>
</tr>
<tr>
<td>y 4</td>
<td>l 2</td>
<td>y 2</td>
<td>I 2</td>
<td>t 2</td>
<td>t 2</td>
</tr>
<tr>
<td>k 2</td>
<td>p 2</td>
<td>i 2</td>
<td>y 2</td>
<td>m 1</td>
<td></td>
</tr>
<tr>
<td>r 2</td>
<td>m 2</td>
<td>h 2</td>
<td>k 2</td>
<td>n 2</td>
<td></td>
</tr>
<tr>
<td>a 4</td>
<td>t 2</td>
<td>h 2</td>
<td>i 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k 2</td>
<td>i 2</td>
<td>v 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d 2</td>
<td>k 2</td>
<td>m 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e 2</td>
<td>d 2</td>
<td>q 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>