Nanobioorganic Chemistry

Research in the Nanobioorganic Chemistry group focuses on the interface of synthetic (bio-)organic chemistry, biology, medicinal chemistry and nanobioscience. The starting point in our research is often synthetic peptide chemistry, carbohydrate chemistry, organic chemistry on proteins, or chemistry on nanoparticles or surfaces.

The development of new, general chemical tools that enables us to contribute to chemical biology. Solid-phase peptide synthesis plays a central role, both for the fully automated preparation of peptides and in the development of new chemical methods. We are developing new linkers, incl. for the synthesis of peptide thioesters, and are developing the application of microwave heating in peptide synthesis.

Regioselective synthetic chemistry on proteins is a growing interest in our group. For example, we have designed and chemically synthesized new insulin variants with abiotic ligands, such as bipyridine for nano-scale self-assembly with Fe(II), or perfluoroalkyl chains for self-assembly driven by the ‘fluorous’ effect.

Another focus is chemoselective carbohydrate chemistry where it enables the construction of complex glycoconjugates, glyconanoparticles, covalent glycan microarrays etc.

We aim to study fundamental biological questions in collaboration with dedicated biology groups and to develop new methods for peptide medicinal chemistry. In medicinal chemistry we focus on peptide hormone derived drug candidates for the treatment of metabolic diseases and on protease inhibitors for intervention in cancer. We are enjoying collaborations with several biophysics groups. A special focus is on determination of protein topologies using small angle X-ray scattering, SAXS, and on the interaction of peptides with membranes.