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ABSTRACT: Self-assembly remains the most efficient route to the formation of
ordered nanostructures, including the double gyroid network phase in diblock
copolymers based on two intergrown network domains. Here we use self-consistent
field theory to show that a tricontinuous structure with monoclinic symmetry,
called 3ths(5), based on the intergrowth of three distorted ths nets, is an
equilibrium phase of triblock star-copolymer melts when an extended molecular
core is introduced. The introduction of the core enhances the role of chain
stretching by enforcing larger structural length scales, thus destabilizing the
hexagonal columnar phase in favor of morphologies with less packing frustration.
This study further demonstrates that the introduction of molecular cores is a
general concept for tuning the relative importance of entropic and enthalpic free
energy contributions, hence providing a tool to stabilize an extended repertoire of
self-assembled nanostructured materials.

The cubic gyroid structure1,2 of symmetry Ia3̅d, with two
intergrown highly symmetric network domains, is a

ubiquitous complex network phase in soft matter, with a
plethora of applications as a functional nanomaterial.3 It forms
spontaneously in biological and synthetic systems,2 including
block copolymers,4−7 and is a useful template for metallic and
inorganic replicas.8 The double gyroid and its chiral single-
network counterpart of symmetry I4132 (formed e.g. in
membrane-templated nanostructures in insects9) have demon-
strated photonic,10,11 plasmonic,12,13 mechanical and trans-
port,14 electrochromic,15 or photovoltaic16 functions, all of
which are essentially determined by their network-like
morphology. In amphiphilic systems, the gyroid and related
network phases form as the result of a delicate balance between
interface tension and packing considerations.17 The interfaces
are related to negatively curved triply periodic minimal surfaces,
resulting in bicontinuous morphologies with two compartments
with network-like topology.
The existence of bicontinuous morphologies suggests the

possibility of network-like tricontinuous structures, based on
three intergrown network-like domains. We here consider
balanced tricontinuous morphologies, where the three domains
are of identical shape and their backbones given by the same
three-periodic net. The dividing surface between three
intergrown nets necessarily contains triple lines (shown in
yellow in Figures 1 and 3), along which all three network
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Figure 1. Candidate morphologies for tricontinuous mesophases with
three intergrown network domains. Yellow lines are triple lines, which
define the loci of the molecular centers and along which all three
domains meet.
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domains meet; the interface is otherwise composed of curved
surface patches (modeled as minimal surfaces) between pairs of
the three graphs. Numerous tricontinuous structure models
have been described.18−25

Tricontinuous morphologies in amphiphilic systems had
been proposed theoretically.24,26 They became a likely
experimental reality with the discovery of the solid IBN-9
mesoporous silicate27 and have very recently been found
experimentally in gemini surfactants.28 However, the partition
of space into a triplet of locally adjacent networks suggests self-
assembly via a different molecular architecture, namely from

star-shaped molecules with three immiscible arms,29 each arm
forming a network-like domain and the molecular cores lying
on triple lines. Three-arm molecules have been shown (by
simulation29−32 and experiment33) to form a simple hexagonal
columnar phase based on the [6.6.6] tiling, referred to here as
hexagonal honeycomb (unless the molecular structure enforces a
spontaneous twist between adjacent molecules18); cf. Figures
4d and 5a. So far, stable balanced tricontinuous phases have not
been found in studies of three-arm polyphile molecules in
solution,34 or in triblock star-copolymers,33 or in blends
thereof.35

We show here that the introduction of an extended core into
the molecular architecture of triblock star-copolymers breaks
the free energetic advantage of the columnar hexagonal
honeycomb phase, resulting in the tricontinuous phase, termed
3ths(5), based on three intergrown 3D nets, labeled ths in ref
36 (Figure 3).

■ THERMODYNAMIC STABILITY AT INTERMEDIATE
SEGREGATION STRENGTHS

Spectral self-consistent field theory (SCFT) calculations37 (see
also Supporting Information section II) are used to obtain free
energy estimates and equilibrium mesophase morphologies,38

for incompressible melts of star-copolymers assuming that the
polymeric components are Gaussian chains. The SCFT
equations for the density profiles ρK(r)⃗ of the copolymeric
components K are solved in Fourier space by the Anderson
mixing scheme39 for a given morphology, providing in
particular the free energy F and the equilibrium length scale
ξ (for which F is minimal). Each morphology is encoded as a
set of crystallographic basis functions (see Supporting
Information section II.C). The equilibrium phase is identified
as the morphology which gives the lowest free energy value.
We consider the molecular architectures for star-copoly-

mers40 composed of three polymeric species illustrated in
Figure 2. A balanced triblock ABC star-copolymer, henceforth
referred to as star-copolymer, consists of three polymeric chains
A, B, and C, with equal monomer numbers NA = NB = NC = N/
3 and with pairwise identical repulsive interaction strength χ =
χAB = χAC = χBC per monomer; the chains are covalently linked
together at a common junction, the molecular center (Figure
2c). A (single-chain) core star-copolymer (Figure 2d) is obtained
by replacing the junction with a star-copolymer, called the
extended core, with three identical arms of component X. The
volume fraction of the core is f X = NX/(N + NX) where NX is
the monomer number of the core. The repulsive interaction
strength per monomer between X and the copolymeric chains
is χX = χAX = χBX = χCX. A dual-chain core star-copolymer (Figure
2e) consists of the same core X, where each arm is connected to
a pair of A, B, or C chains, each of length N/6.
Our key result is the phase diagram (Figure 4) for dual-chain

core star-copolymers which includes significant parameter
regions for which the tricontinuous 3ths(5) structure is the
stable equilibrium phase. This phase forms at core volume
fractions f X around 20% when the segregation strength χX
between the core X and the three chains A, B, and C is
sufficiently strong. The phase is adjacent to the conventional
honeycomb columnar phase33 at lower core volume fraction f X
or lower segregation ratios χX/χ and to another new columnar
phase for larger core volumes. Including the polygons
representing the core domains, the conventional honeycomb
corresponds to the [12.12.3] tiling. For weak segregation of the

Figure 2. Different linear and star-copolymer architectures, with and
without an extended core.

Figure 3. Geometry of the 3ths(5) phase. (a) Each component A, B,
and C is represented by a distorted monoclinic version of the ths net.
(b) Three ths nets can be intergrown to give the 3ths(5) structure of
symmetry group I112, with c/a ≈ 4.5−9.5. (c) Interfaces between the
copolymeric components can be illustrated by minimal surface patches
that meet along the triple lines which represent the location of the core
X. (d) The triple lines revolve around straight lines along the
crystallographic c-axis that are arranged approximately on a triangular
lattice.

Macromolecules Article

dx.doi.org/10.1021/ma5016352 | Macromolecules 2014, 47, 7424−74307425



ABC chains (χN ≈ 25, Figure 4b), this novel tricontinuous
phase is adjacent to the order−disorder transition.
The 3ths(5) phase is tricontinuous (following the definition of

ref 18); each of the copolymeric domains A, B, and C forms a
single connected (mathematically speaking “continuous”)
network-like labyrinthine domains, all of identical shape. Each
domain is described by a periodic net that is a monoclinic
distortion of the ths net.36 In common with the nets in the
gyroid and O70 phases,41,42 three edges emanate from each
vertex and the smallest cycles are 10-rings. The 3ths(5)
structure has monoclinic symmetry I112 (space group number
5 in ref 43) with only a single 2-fold axis. The ratio of the
crystallographic lattice parameters is large, around c/a ≈ 4.5−
9.5, and the angle between the a- and b-axes is γ ≈ 70°−75°,
depending on χN as well as on f X and χX.

a The fourth
component, the core X, forms an infinite array of discrete
helical rods parallel to the crystallographic c-axis, each
representing a triple line.
The phase diagram further contains another new columnar

phase, based on the distorted [8.8.4] Archimedean tiling and of
symmetry cm (wallpaper group no. 5) (see Figures 4c and 5d).
In this phase, the cross sections of the A, B, and C domains are
distorted octagons (that in the limit of small cores become 60°
rhombi), four of which are arranged around each triple line:
two of one material and one of each of the others. In the
equilibrium copolymer morphology, the quadrilateral cross

sections of the core domains are elongated (Figure 4).b

(Undistorted [8.8.4] tilings, where the cores are not arranged
on a triangular lattice, have been observed in star-copolymeric
melts.33,44) For weaker segregation strengths χN = 25, an
additional columnar phase, termed the alternating honeycomb, is
found to be stable in a narrow parameter range. However, near
the order−disorder transition thermal fluctuations (neglected
by the mean-field SCFT theory) are important, making the
existence of the alternating honeycomb phase less certain.
The identification of the equilibrium phases rests on

comparison of free energies of different test morphologies,
computed by spectral SCFT. Our set of test morphologies
include the columnar and tricontinuous morphologies detailed
in Table 1, lamellar, micellar, and striped lamellar morphologies
(see Supporting Information sections II.D, IV, and V).
Note that the 3ths(5), the distorted [8.8.4] tiling, and the

alternating honeycomb phase share the common feature that
the triple lines trace lines (straight or slightly curved)
approximately arranged on a triangular lattice.
The key ingredient to the stabilization is the enhanced

entropic chain stretching effect due to introduction of the
extended core X. As the limit of small core volumes in the
phase diagrams shows (see Figure 4 and Supporting
Information section II.G), the 3ths(5) phase is not stable
anywhere in the phase diagram of single- or double-chain star-
copolymers without a core. The use of double-chain rather than

Figure 4. Phase diagram of dual-chain core star-copolymers for different segregation strengths χN = 40 (a) and χN = 25 (b): Data points are results
from SCFT simulations, each representing the minimal free-energy phase. See Supporting Information sections II and V for details on the calculation
of the phase diagram. (c−e) Representations of the SCFT concentration profiles for the three observed columnar phases; at each point, the color
represents the component K with the maximal density value ρK(r) out of the four components K = A, B, C, and X. Note the deviations of the core
regions from a spherical cross section. (c) χN = 40, f X = 0.25, χX/χ = 2; (d) χN = 40, f X = 0.2, χX/χ = 1.625; (e) χN = 25, f X = 0.2, χX/χ = 2.36. See
Supporting Information section V for complete representation of phase data. The “disordered” phase is a spatially homogeneous fluid state of all four
components (see Supporting Information section II.H).

Macromolecules Article

dx.doi.org/10.1021/ma5016352 | Macromolecules 2014, 47, 7424−74307426



single-chain core star-copolymers is a further necessary
contribution to the stability of this phase. In single-chain core
star-copolymers, the 3ths(5) phase is not stable for any value of
f X (see Supporting Information section II.G).
An alternative to the use of double-chain core star-

copolymers that would also likely stabilize the 3ths(5) phase
is the use of single-chain core star-copolymers with different
statistical segment lengths for the chains that constitute the
core and those that constitute the ABC chains. The strong
segregation theory suggests this because changing the
molecular architecture or the statistical segment lengths alter
the stretching free energies (cf. eq 3) in a similar way.

■ THE ROLE OF THE EXTENDED CORE IN
EMPHASIZING CHAIN STRETCHING, ELUCIDATED
IN THE STRONG SEGREGATION LIMIT

The identification of the 3ths(5) structure as a stable
tricontinuous phase in star-copolymer melts confirms the
intuition gained from the following geometric analysis in the
strong segregation limit. In short, the introduction of an
extended core into the molecular architecture increases the
relative contribution of chain stretching entropy (or packing
frustration) relative to interfacial surface tension. This
mechanism is sufficient to break the prevalence of the
hexagonal columnar honeycomb phase and to tip the balance
between interface and chain stretching terms to favor the
3ths(5) phase which has less chain stretching frustration but
higher surface area than the conventional honeycomb.
The strong segregation theory45 (SST) is the limiting case of

SCFT, where one considers infinite immiscibility and hence
sharp interfaces between the chemically different components.
While SCFT presents the overarching numerical framework
applicable to all segregation strengths, the SST allows for the
derivation of analytic equations that express the thermody-
namic free energy as a function of explicit geometric properties
(surface areas, volumes, width homogeneity) of the copoly-
meric interfaces and domains. In the SST limit, the free energy
per copolymer

= +F
nk T

F
nk T

F
nk TB

Int

B

Conf

B (1)

consists of a surface tension term, FInt/nkBT = (1/ξ), where ξ
is length scale of the structure. The chain stretching term,
FConf/nkBT = (ξ2), penalizes configurations that require a high
degree of chain stretching in order for the polymeric chains to
fill space and fulfill the incompressibility constraint. The surface
tension term favors minimal interfacial areas and decreases as
1/ξ as the structural length scale ξ increases, hence favoring
larger structural lengths, whereas the chain stretching term
grows as ξ2 with ξ, hence favoring smaller length scales. The
length scale of the equilibrium structure is the result of
minimizing eq 1 with respect to ξ.
For the cases of single- and double-chain star-copolymers

without a core, the surface tension term reads46

χ
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where AABC is the combined surface area of all interfaces
between distinct species within one unit cell; V is the unit cell
volume, and a is the statistical segment length of each
component.
The stretching term reads47
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where f K is 1/3 for star-copolymers with three single chains
(Figure 2c) and 1/6 for the case with pairs of chains.48 The
integral in (eq 3) is performed over the regions VK occupied by
the respective species K. z(r)⃗ can be thought of as the distance
from a point r ⃗ along the shortest coarse-grained polymer path
(in the configuration that minimizes FConf while obeying the
incompressibility constraint) from the volume element at r ⃗ to
its associated grafting point. While this complex definition of z
prevents the exact evaluation of FConf except for in the simpler
mesophase morphologies,49 approximate expressions discussed
below provide estimates for the degree of chain stretching
frustration.
The equilibrium morphology is determined by the

minimization of F in eq 1 with respect to different candidate
morphologies and to the structural length scale ξ (see
Supporting Information section III). As stated above, the
resulting equilibrium length scale is a compromise between the
tendency of the surface tension term to increase ξ and the
stretching term to decrease ξ.
Importantly, it turns out38 that this minimization always leads

to a length scale ξ such that the ratio FConf/FInt is

=
F
F

1
2

Conf

Int (4)

providing the relative weight of the two terms in the
equilibrium length scale (see Supporting Information section
III.D).
For star-copolymers without extended molecular cores, the

structure minimizing this free energy is the hexagonal columnar
phase, a honeycomb structure with triple lines at all hexagon
corners (Figure 5a).
However, while optimal with respect to interface area, the

honeycomb structure has a significant degree of chain
stretching frustration. This is best illustrated by the cross-

Table 1. Structural Data and Free Energy Terms for the
Candidate Mesophase Morphologies for Star-Copolymer
Self-Assemblya

structure symmetry c/a γ AABC/(LV)
1/2 L/V⟨z2⟩

honeycomb p3m1 1.32 0.192
3cds(1) P1 1.61 0.179
3ths(109) I41md 4.5 1.62 0.174
3ths(5) I112 4.5 70 1.63 0.167
3srs(24) I212121 1.78 0.166
3qtz(145) p32 1.3 1.89 0.162
alternating honeycomb p3 1.86 0.160
6-fold tiling p2 2.15 0.160
distorted [8.8.4] tiling cm 2.15 0.160
aEach structure is labeled following the notation of ref 36, with the
space group number in parentheses. Where necessary, structural
parameters (c/a ratio, angles of the unit cell) are chosen as the values
corresponding to optimal choices in the numerical SCFT calculations.
Note that the data for ⟨z2⟩ is obtained neglecting the particular curved
shape of the interfaces (see Supporting Information section III.A.2).
Note the general tendency that an increase in the interface term AABC/
(LV)1/2 is accompanied by a lower stretching term L⟨z2⟩/V. The
family 3ths(109) contains 3dia(109) as a special case.
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sectional area available to the A, B, and C chains of a star-
copolymer whose core sits at a triple line: its triangular shape is
far from the ideal isotropic (circular) shape with constant
radius. Evidently, circular disks do not tile space without gaps
and therefore cannot be realized in copolymeric melts. The
most nearly circular shape that can form a periodic space-tiling
system is the hexagon that results if the triple lines are arranged
on a triangular lattice, e.g., in the columnar phases in Figure
5b−d and in approximate form also in the tricontinuous
3ths(5) morphology.
This qualitative argument corresponds to the quantitative

inference that when assuming a fixed triple line length L per
unit cell and a fixed unit cell volume V (which together fixes the
length scale ξ), the packing term L⟨z2⟩/V is minimal when the
domain VK occupied by copolymer component K = A, B, and C
is a segment of a cylinder with radial isotropy (see Supporting
Information sections III.B, III.C, and IV). Any deviation from
the cylindrical shape increases L⟨z2⟩/V, i.e., the packing
frustration. The alternating honeycomb, the 6-fold tiling, and
the distorted [8.8.4] tiling (Figure 5b−d) have lower stretching
frustration L⟨z2⟩/V than the conventional honeycomb structure
(Table 1). Similarly, the packing frustration of those
tricontinuous morphologies whose triple lines follow triangular
or other close-packed lattices adopts intermediate values (Table
1). These considerations clearly emphasize the importance of
the arrangement of the triple lines on a close-packed lattice to
minimize packing frustration.
However, for star-copolymers without an extended core, the

small interface term of the conventional honeycomb at the
equilibrium length scale outweighs its larger chain stretching
frustration.
In order to stabilize the tricontinuous phase (with less

stretching frustration but larger interfaces), it is necessary to
pronounce the role of the stretching term relative to the surface
tension term. This effect is achieved by any mechanism that
prevents the system from reducing its structural size: At larger
length scales, the contribution of the stretching term to the free
energy is larger relative to the surface tension term, thus
favoring structures with lower degrees of chain stretching.
While the length scale could be constrained explicitly by

specific molecular interactions (see Supporting Information

section III.C.1), we achieve a similar effect by the introduction
of an extended core X. Its primary effect is the creation of
additional interfaces (between A and X, B and X, and C and X)
that increase the surface area. The stretching contribution of
the core star-copolymer is still largely described by eq 3 (see
Supporting Information section III.C.2). The surface tension
term (eq 2) now reads

χ χ
= +

⎡
⎣⎢

⎤
⎦⎥

F
nk T

Na
A

V
A
V6 6

ABC X XInt

B (5)

where AX denotes the combined interface area between the
core X and K = A, B, and C.c FInt increases when the volume
fraction f X of the core X or the segregation strength χX increase.
The resulting equilibrium length scale ξ (at which Fint = 2FConf)
can become larger when compared to the case without the core.
This results in a relatively stronger chain stretching
contribution, which in turn stabilizes the tricontinuous
3ths(5) phase and the [8.8.4] tiling.
While these geometric arguments were developed for the

strong segregation regime, the predicted phase sequence of
conventional honeycomb, tricontinuous 3ths(5) phase, and
[8.8.4] tiling is also observed in the SCFT calculations for
intermediate segregation strengths (Figure 4), adding further
support to the general validity of this geometric picture.

■ DISCUSSION AND CONCLUSION
The theoretical analysis of this article now calls for
experimental attempts to realize the tricontinuous 3ths(5)
phase. Since the purpose of the core is simply the creation of
additional interfaces near the triple lines, a variety of
realizations are conceivable, e.g., via the introduction of
aromatic cores50 or nanoparticle−polymer composites.51The
unit cell size can be shielded from shrinkage by e.g. π
stacking50,52 or H-bonding of cores,50,53 thereby also emphasiz-
ing the stretching contributions. Maximal stiffness of the core
(that suppresses the entropic contributions of the core) and
strong interactions χX between the core and the other
components aid stability.
The 3ths(5) phase challenges the notion that systems driven

toward structural homogeneityhere by virtue of the packing
termtend to adopt highly symmetric morphologies; in soft

Figure 5. Candidate morphologies for columnar phases. Black polygons delineate the spatial regions associated with a given triple line (yellow) and
hatched regions the volume domain VA. The combined cross section of the domains VA, VB, and VC of the conventional honeycomb is a triangle, in
contrast to the hexagonal domain cross sections of the alternating honeycomb (b), of the 6-fold tiling (c) and of the distorted [8.8.4] tiling (d).
Compared to the triangular shape of the conventional honeycomb, their hexagonal shapes are significantly closer to a segment of a cylinder around
the triple line, yielding lower values of L⟨z2⟩/V and hence lower chain stretching. This effect becomes more pronounced for larger cores. Note that
the triple line arrangements in (b−d) contain the same triangular lattice.
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bicontinuous phases this notion has been reinforced through
the ubiquity of the cubic bicontinuous phases, where the high
symmetry is however a consequence of homogeneity.54 The
3ths(5) phase, and the O70 41,42 phase of symmetry Fddd,
demonstrate that packing homogeneity can be achieved without
high three-dimensional crystallographic symmetry. On the
practical side, the low monoclinic symmetry of the 3ths(5)
phase with large ratios of the lattice parameters emphasizes the
caution that simulation studies in cubic or rectangular
simulation boxes fail to observe low-symmetry morphologies.
Our results reinforce the role of geometry for the study of

nanomaterials. Geometric intuition has here provided a
shortcut to the design of a fundamentally new nanostructure,
bypassing the details of chemical composition or physical
interactions and the pitfalls of molecular simulations. Geo-
metric analyses, recognized for the understanding of the
bicontinuous structures,55−58 will continue to play a crucial role
in converting an ever increasing abundance of possible
geometric designs into functional real-world nanomaterials
accessible by self-assembly. Where there is matter, there is
geometry (Johannes Kepler).
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